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Abstract

This report documents the findings of an Army SBIR Phase I study on multivariate non-
parametric tests for stochastic model validation. We herein introduce a method for generalizing
rank transformations to the multivariate domain such that the rank-transformed set is uniformly
distributed in multiple dimensions. This furnishes a more robust hypothesis testing technique
than earlier proposed approaches and has certain computational advantages. This approach is well
adapted for continuous-output models. For tests based on partitioning the model output space into
bins and computing a confidence statistic based directly on bin counts, as opposed to computing
statistical moments, we introduce a log-likelihood statistic that appears to be an excellent summary
indicator of correspondence between a simulation model and test data. The approach is extremely
versatile and well-adapted to discrete-output models.
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1 Introduction

The present Phase I SBIR study is concerned with multivariate, nonparametric statistical tech-
niques for validating stochastic simulation models. Model “validation” means ascertaining whether
or not a computerized or analytic model of some phenomenon, within a certain domain of appli-
cability, is in sufficiently accurate agreement, or correspondence, with reality, as represented by a
finite set of test data [22]. Although there are a number of differing interpretations on the meaning
and operational nature of simulation validation (See, e.g., [7, 9, 12, 17, 23, 24, 25]), the focus of this
study is solely on statistical approaches based on testing for correspondence between a finite em-
pirical body of test data and a large population of exemplars generated by a stochastic simulation
model.

Computer-driven simulation of stochastic systems is a fundamental analytical technique used
throughout engineering, and the natural, physical, and social sciences.! Thus, the development of
inference-based techniques for model validation is of widespread interest. Consequently, there has
been considerable attention devoted to this problem over the past three decades. (See [8] for an
extensive annotated bibliography on this subject.) Prior to this effort, however, work in this field,
with few exceptions (e.g., see [5]), has addressed largely only univariate nonparametric techniques
or multivariate parametric techniques. The extension to multivariate nonparametric techniques,
which is discussed herein, is nontrivial [19].

Multivariate-output, or multiple-response, simulation models [6] are of interest in a wide vari-
ety of applications, such as in assessing the performance of communications networks. Validating
multivariate models is much more complicated than validating univariate models because of po-
tential dependencies, or correlations, among the various output variables. An organized statistical
approach to the problem of validating stochastic univariate simulation models was proposed and
explored in [20, 21]. Since applying univariate techniques separately to each output variable fails to
detect such cross-couplings, development of sound multivariate testing procedures requires special
thought and consideration. As is described in detail below, we have generalized the model valida-
tion approach to problems of multivariate simulation. Although a number of parametric methods
for approaching this problem have been proposed previously (e.g., [2]), our focus is on tests that are
nonparametric (i.e., distribution-free), in order to obviate: (1) the undesirable necessity of assuming
a population model for experimental data; or (2) the requirement of ascribing an exact, analytic
statistical model to account for experimental data.

The basic framework in which model validation will be considered in this study is that of multi-
sample statistical inference. In particular, we will consider situations in which one or more empirical
realizations of the phenomenon or phenomena to be modeled are available, as well as one or more
realizations produced by the simulation model. ‘Given two such sets of data, we wish to determine
whether the simulated data capture accurately the behavior of the empirical data. That is, we wish
to perform a test of homogeneity.

In the present report, we identify and highlight the key features of the few multivariate tech-
niques, parametric and nonparametric, that have been proposed in the literature, and demonstrate
how they can be generalized or modified to yield more versatile and robust test methodologies.

tAn application of particular interest to the Sponsor is the simulation of communication networks [10], in which
the analyst wishes to determine network performance - e.g., in terms of mean throughput and delay — as a function
of variable control factors — e.g., message length, message arrival rate, and transmission mode (single channel or
frequency hopping).

SBIR Topic A95-060 1 Barron Associates, Inc.
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As demonstration vehicles for these advanced methods, we present a suite of case examples that
include (1) a random number generator; (2) an autoregressive moving average (ARMA) process;
(3) a coin-flipping exercise; and (4) a Poisson process. These simple examples represent the essen-
tial features for a considerable range of problems, often for which computer simulation is the only
practical method of analyzing system behavior.

2 Classical Techniques for Model Validation
Naylor and Finger {13] have listed several of the best-known techniques for model validation:

o Analysis of Variance (ANOVA) —~ Tests the hypothesis that the mean (or variance) of data
generated by a computer simulation matches that computed from an empirical test sample.
Three important assumptions underscore this technique: normality, statistical independence,
and a common variance.

o X2 Test — Tests the hypothesis that a sample of simulated exemplars has the same frequency
distribution as the test sample. This test is relatively sensitive to non-normality and requires
selection of categories for data that are suitable and unbiased.

e Kolmogorov-Smirnov Test — This is a nonparametric test that involves comparing the cu-
mulative frequency distribution of the simulated and true process data. It treats individual
observations separately and, unlike the x? test, does not involving partitioning the data into
bins. However, it employs the normality assumptions inherent in x? testing and does not
generalize readily to the multivariate domain.

e Regression Analysis — This test involves regressing the true process data on the simulated
data and testing whether the resulting regression equations have intercepts that are not
significantly different from zero, and slopes that are not significantly different from unity.

e Spectral Analysis — This involves computing second- or higher-order spectra (polyspectra) of
a time series and comparing the estimates for the simulated and test data.

e Other Techniques — There are a host of additional potential model validation techniques,
some of which have already been investigated by others, such as factor analysis and Theil’s
inequality coefficient. Other examples include comparison of data compression properties,
comparison of data state-space reconstructions (e.g., via Taken’s embedding theorem) [26],
and comparison of parametric or nonparametric (e.g., neural network) model predictions,
structures, or parameter values.

In summary, the important distinguishing characteristics of various alternative test procedures
are the validity of the assumptions implicit in them, their sensitivity to violations of those assump-
tions, and their flexibility in applying to test data other than those represented by just one empirical
test database (e.g., extrapolation) [24]. Most of the above techniques are either parametric or uni-
variate in scope and are limited in their domain of applicability and the restrictive assumptions that
they employ. Our emphasis herein is on development and testing of multivariate nonparametric
techniques, which offer wide applicability with regard to such assumptions and extensions for test-
ing of stochastic models. Nonparametric procedures for simulation model validation do not rely on

SBIR Topic A95-060 2 Barron Associates, Inc.




Multivariate Nonparametric Statistical
Final Technical Report Techniques for Simulation Model Validation

assumptions regarding the statistical distributions of data. As such, they are particularly valuable
in establishing the authenticity of simulations in which high confidence cannot be placed in knowl-
edge of the true distribution of empirical data, as is generally the case with real-world data. The
use of multivariate testing obviates the need to perform multiple univariate tests, and avoids the
pitfall of increased probability of significant findings due to chance alone. The use of multivariate
statistics also increases the power of a test, as univariate tests disregard the covariances among the
variables and hence use less of the information available about a set of observations.

3 Moment-Based Tests for Correspondence

In this section, we elaborate on a basic theme, namely the computation of moments, common
to all of the tests introduced in the literature ([5, 15, 20, 21]) to date. This technique is employed in
both parametric and nonparametric tests. In this and all of the subsequent sections, our objective,
stated formally, is to ascertain whether a proposed stochastic model, M, accounts for an empirical
test sample, 7, of real-world data. The fundamental strategic approach of all moment-based tests
is to compare certain sample statistics of 7 (i.e., sample moments) with the values that they
are expected to assume under the null hypothesis that M accounts for the test data in 7 or,
alternatively stated, that M and 7 are in correspondence with one another, viz., M 2 T, where
‘D’ means “as a distribution.”

Since 7 is only a finite sample (size V), there will generally be some discrepancy between any
sample statistic (say, for concreteness, the sample mean) computed from 7" and the expected value
of that statistic determined from theoretical or simulation analysis of the surmised stochastic model,
M. To see why this is so, one could go about determining the expected value of the sample mean
for T by generating a large number of simulation samples, all of the same size as 7, and creating a
scatter plot of the resulting sample means. Even in the limit of infinitely many simulation sample
sets, the distribution of sample means will have finite variance. According to the Central Limit
Theorem (CLT), the distribution of sample means will be approximately Gaussian with mean p
and standard deviation o/ VN, where p and o are respectively the population mean and standard
deviation of the output distribution characterizing M. It follows that a discrepancy between the
computed sample mean of 7 and the expected value, p, is “acceptable” if it is on the order of
o/v/N.} The essence of moment-based tests, in short, is to determine whether the discrepancies
between sample statistics computed from 7 and their expected values are acceptable vis-a-vis the
standard error of the sample statistics. Unacceptably large discrepancies are grounds for rejecting
M.

Justification for rejecting the null hypothesis, M <2, 7T, is deemed either appropriate or
inappropriate based on the scope of the validation tests that have been applied. Although the
failure of a model to pass a certain battery of tests may permit its definitive rejection altogether, it
is never possible, strictly speaking, to proclaim a model valid based on the results of a finite number
of statistical tests, no matter how extensive. One can say only that a model has survived scrutiny
or that it has not. With an infinitely large test sample it would be possible to make definitive
pronouncements in the affirmative as well as the negative, but that is not the case in practical
model validation applications.

In all of the stochastic model simulation scenarios considered in this report, it is assumed that

YOf course, not all tests necessarily use this type of critical region.

SBIR Topic A95-060 3 Barron Associates, Inc.




Multivariate Nonparametric Statistical
Final Technical Report Techniques for Simulation Model Validation

simulation exemplars can be generated in arbitrarily large numbers and that sufficient randomness
and independence among the generated exemplars can be achieved (e.g., by using a freshly seeded
random number generator for each run). As a result, a good “picture” of the output probability
distribution function (p.d.f.) describing M can be obtained. Empirical data, by contrast, are
generally scarce.

3.1 Univariate Moment-based Tests

To elucidate the main steps of applying moment-based tests, we focus on the simple case of a
stochastic model, M, whose output is a univariate Gaussian distribution of population mean y and
standard deviation o, viz.

P(z) = 1 o~ (@—1)?/20° (1)
oV2m
where P(z) is the probability density characterizing the output of M. We shall denote such
a Gaussian distribution as N'(y,0), and write M = N (u, o) to express the statement that the
output of M is a N (u, o) distribution. Suppose, for instance, that we are attempting to build a
random number generator that nominally returns normally distributed numbers and that we wish
to find out whether it is a “good” source of random numbers.
In the special case of Gaussian models, it is convenient to apply the following linear transfor-
mation to 7, viz.

zi = (¢ — p)/o. (2)

This way, comparing 7 to N(p, o) is equivalent to comparing 7, = {z1,...,2n5} to the canonical
form N (0, 1), which has zero mean and unit variance. The sample statistics that are most frequently
computed in parametric tests are the sample moments, viz.,

N
mksizz{“ k=1,2,3,... (3)
Ni:l

If N is not too small, we may appeal to the CLT to argue that the probability distributions
characterizing each my are asymptotically Gaussian with mean M} and standard deviation Sy
given by

Mk = Uk (43“)
Sy = ox/VN (4b)
where
L = /Oo z*P(z) dz (5a)
00 1/2
o = [ @ - mP@ds| " = [umn—d]” (5b)

are the population moments. Note that p; = p and o; = o. The results for the first few moments,
in the canonical case of 4 = 0 and o = 1, are provided in Table 1. The general results in Egs. 4 and
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5 do not depend on the specific functional form of P(x). Thus, they are not restricted to the special
case of Gaussian models. Results for the case of a uniform distribution over the unit interval, viz.

lif0<z<x1
P(z) = { 0 otherwise (6)

are also provided in Table 1.

Table 1: M} and Sy Values for Gaussian (left) and Uniform (right)
Distribution Models

k| M Sk k| M; Sk

1[0 JI/N 1]1/2| J/12)/N
2| 1 V2N 211/3| /45N
3/ 0| I5/N 3|1/4| (9/112)/N
4| 3| +O6/N 411/5 | \/(16/225)/N
5( 0 | 945/N 5| 1/6 | /(25/396)/N
6| 15 | /10, 170/N 6 | 1/7 | \/(36/637)/N

The inspiration for computing higher-order moments is accredited to Reynolds ([20, 21]), whose
Uy and U} statistics are essentially the same as my — My and (my — My) /Sy, respectively for the
special case of one test class (see remarks below). As a numerical demonstration of a univariate
moment-based test, we generated a test sample, 77, of N = 100, 000 exemplars using a MATLAB
routine that nominally returned a sequence of numbers representing an A(0, 1) distribution. Com-
puted sample moments are presented in Table 2. The fourth column gives the confidence statistic,

Table 2: Moments of Test Sample 7;

k my 2k o
1.23x 107> | 0.0039 | 0.5016
1.0022 | 0.4919 | 0.6886
—0.0086 | —0.7037 | 0.2408
3.0120 | 0.3877 | 0.6509
—0.0544 | —0.5600 | 0.2877
14.9884 | —0.0364 | 0.4855

Oy U i W DN~

ay, for the computed value of my, vis-3-vis the probability distribution, N'(My, Sy), associated with
it. oy is defined as the probability that the k’th-order sample moment of an arbitrary simulation
sample, S, of size N generated by M will be less than my. Since the probability distribution for
my, is asymptotically Gaussian with mean M and standard deviation S, it follows that oy is equal
to Erf(2x), where z; = (mg — My)/Sk is the z-transform of my vis-a-vis N (Mg, S) and

Erf(z) = ~=*/2 gy (7)

1 T
— e
\/271' /—oo

SBIR Topic A95-060 5 Barron Associates, Inc.



Multivariate Nonparametric Statistical
Final Technical Report Techniques for Simulation Model Validation

is the definite integral of the normalized zero-mean, unit-variance Gaussian distribution. The
value a3z = 0.2408, for example, indicates that were other simulation samples of size N = 100, 000
generated by a N (0, 1) random number generator, an mg value less than ~0.0086 would be obtained
approximately 24% of the time. Extreme values of oy (e.g., o < 0.01 or ax > 0.99) cast doubt
on the validity of M as a candidate model to account for 7;. The occurrence of two or more
extreme values, as a rule, often justifies rejection of M. The actual decision, however, of whether
to reject M depends on the outcome of a decision algorithm, which typically incorporates specific
threshold settings on the a4’s and examines their values in toto. The formulation of such decision
rules for practical applications is generally a complex problem and hinges on such considerations
as the relative penalties ascribed to different types of erroneous decisions that may occur.

The confidence statistics in Table 2 all have nonextreme values. There is accordingly, based
on the scope of the moment-based tests applied thus far, no justification for rejecting the null
hypothesis that M 2 A7(0,1) is a valid model that accounts for 7;. As an example of what happens
when the univariate moment-based tests are applied to non-Gaussian test data, we generated a t-
distribution with v = 9 degrees of freedom and proceed to show that it is non-Gaussian. Such a
t-distribution is obtained by extracting, from a N(u, o) population, a sample of size v + 1 = 10.
The t-statistic, defined as

8
is computed for each sample, where m and s are the sample mean and standard deviation respec-
tively. The resulting set of ¢-statistics converges asymptotically to a t-distribution with v degrees
of freedom. An expression for the exact functional form of the p.d.f. may be derived analytically,

viz.
1 T((v+1)/2) (1 . ﬁ) -(v+1)/2 .
Ve T(v/2) v '

The reason for selecting a t-distribution for demonstration was that it “looks like” a Gaussian
distribution in certain superficial respects: it has zero mean, finite variance, symmetry about zero,
and nonzero probability density at all real values of ¢. It is thus a nontrivial problem to ascertain
whether a simulation sample drawn from a t-distribution fails to represent a A (0, 0) distribution.
where 0 = /v/(v — 2) is the analytically computed standard deviation of the ¢-distribution. To
create a test sample, 75, we generated a t-distribution (v = 9) of N = 10, 000 exemplars and applied
the moment-based tests under the null hypothesis A/(0, \/9/7) 2> T;. The results analogous to
those in Table 2 are provided in Table 3, in which my = 1/N LI, (t:/1/9/7)*.

T(t) =

" Table 3:-Moments of Test Sample T

k M 2k ay

1] 0.0092] 0.9207 0.8214
2| 0.9860 | —0.9923 0.1605
.3 | —0.0246 | —0.6344 0.2629
4| 3.8386 | 8.5589 1
5| —1.1908 | —3.8736 | 5.36 x 10™°
6 | 34.5354 | 19.3714 1

SBIR Topic A95-060 6 Barron Associates, Inc.
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It is evident from the results in Table 3 that the failure of the higher-order moments to agree
with the M}’s under the assumption of Gaussianity (on the left in Table 1) is grounds for rejecting

the null hypothesis A(0,/9/7) «—— T. The numbers in Table 3, in toto, reveal convincingly
the non-Gaussian character of the ¢-distribution test sample, 75. From this simple comparison
demonstration, it appears that moment-based tests provide a powerful means of model validation.

3.2 Multivariate Moment-based Tests

We show herein how the moment-based tests generalize readily to the multivariate realm. For
concreteness, we focus on the case of the output distribution emerging from a linear bivariate AR(1)

process, viz.,
YLk Air Arp Y1,k—1 e1k
1 —_ L] El E] + ? 10
( Y2,k ) ( Aoy Az ) ( Y2,k—1 ) ( ek ) (10)

in which k is an index denoting the (discretized) time, y; and y are a coupled pair of time-
series outputs, e; and ey are a pair of independent noise channels, and A is a matrix of constant
coefficients. For concreteness, we used the following particular set of A values:

0.2 0.1
A= ( -0.2 0.6 ) (11)

If the noise processes are both N (0, 1)-distributed, the second-order static (zero-delay) moments
can be shown to compute to

vl [ o1, 1.0609
Tigher | =| ofa | =| 00599 |. (12)
V2 o2, 1.6063

Since the AR process is a linear filtering of Gaussian noise inputs, it can be shown that the
output vector, (y1x y2%)", interpreted as a static distribution, represents a bivariate Gaussian
distribution with population mean

0 :
®= ( 0 ) (13a)

2 2
o = ( T o ) (13b)

031 0322

and variance

the component values for which are given in Eq. 12. Note that in the multivariate realm, the
population mean of a P-dimensional probability distribution is a P x 1 vector and the covariance
is a P x P tensor.

Given a simulation sample, S, of N = 100,000 time-series exemplars generated numerically by
the AR process, we wish to test the null hypothesis A'(u,0) 2 8. Since the covariance matrix for
an arbitrary zero-mean probability distribution of dimensionality, P, is always Hermitean (positive
definite and symmetric), it follows that o2 may be diagonalized with respect to a rotated set of
orthogonal coordinate axes (the principal azes of the distribution) in the P-dimensional state space.

SBIR Topic A95-060 7 Barron Associates, Inc.




Multivariate Nonparametric Statistical
Final Technical Report Techniques for Simulation Model Validation

If one effects a linear transformation of the state coordinates, y; and y», from the original to the
rotated frame, the resulting probability density function assumes the decoupled form

1 132 jos2 1 12 /o2 1 1 \2 jo5n2
Pt ul) = ) /221] [_ () /222]...{___ ~(W}p)?/253, 14
Wt p) = |52 TaVar V2 (4

where Z1,...,Xp are the square roots of the eigenvalues of 02, and ¥}, ...,y are rotated coordi-
nates, viz.,
i Y
Co=A (15)
Yp yp

where A is a proper rotation matrix such that AAT = 1 and |A] = 1. In the bivariate case, the
rotation matrix assumes the form
)‘:< cos 8 sin9> (16)

—sin @ cos 8§

in which 6 is the angle of rotation between the unprimed and primed coordinate systems.
Once in the rotated frame, P separate z-distributions may be obtained by rescaling the coordi-
nate axes to normalize the variances, viz.,

2 y1/%1
C = : (17)
Zp Yp/Zp
or, in matrix form
é’ — U_lg, (18)
where o is the covariance tensor that appears as
1 0 O
co=10 . 0 (19)
0 0 Xp '

in the primed system.

To assess the efficacy of the multivariate moment-based tests for Gaussian models, we generated
a test sample, 7, of N = 100,000 exemplars from the AR model in Eq. 10. The noise processes
were a pair of independent A/(0,1) processes. Hence, we expect the model output, viewed as a
static distribution, to be a zero-mean bivariate Gaussian process with covariance

- (20)

1.0609 0.0599
0.0599 1.6063

as in Eqs. 12 and 13b. We wish to test the null hypothesis N(0,0) «+-— 7. To apply the moment- -
based tests for Gaussianity, we first transform to the rotated coordinate frame in which o2 is

SBIR Topic A95-060 8 Barron Associates, Inc.
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diagonalized. The transformation to the frame in which the variance is diagonalized is represented
by the rotation matrix in Eq. 15, such that

o 0 2y -1
where 7 = 1.0544 and 5 = 1.6128 are the square roots of the eigenvalues of o2. In this case, the
rotation angle computes to § = —6.20°. The essence of the rotation is illustrated in Fig. 1, which

shows the principal axes as dashed lines. The principal axes are found by rotating the original
coordinate axes in the two-dimensional state space through an angle §. For more complicated
multivariate problems with three or more variables, P — 1 angular variables are required to specify
the orientation of the principal axes. The contours of constant probability density for any bivariate
Gaussian distribution are a family of concentric ellipses whose principal axes are those corresponding
to the coordinate frame in which o2 is diagonalized.

X1

Figure 1: Elliptical Contours of Bivariate Gaussian Distribution

Having effected the transformation to the rotated frame, we apply the component-wise z-
transform of Eq. 18 to obtain a transformed test sample set, which we shall denote as 7. The
hypothesis A'(0,I) «2— T is equivalent to N'(0,0) <= T, where I is the P x P identity matrix
and N(0,I) denotes a set of P independent zero-mean, unit-variance Gaussian distributions. The
left-hand column of Table 5 provides confidence statistics for the various sample moments, my, k,,
of T/, which are analogous to those introduced in the univariate section. For each sample moment,
a z-statistic, viz.,

Zk1k2 = (mkl,kz - Mkl,kz)/SkIyIW (22)
and a confidence statistic :
Qg by = Brf (2x, £,) (23)
are computed, where
Mk1,k2 Hky ks —/ CL’l .'1322P 2:1,:132) diL‘ldzL‘z (243.)

SBIR Topic A95-060 9 Barron Associates, Inc.
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and
Sk1,k2 = 0'k1,k2/\/ﬁ = N—1/2 [N2k1,2k2 —'uil,kz] (24b)

are the expected values and standard errors, respectively, of the sample moments. They are anal-
ogous to the corresponding statistics introduced in the univariate section and are related to the
moments of the probability distribution function. The analytically computed results for the first
few moments are provided in Table 4.

Table 4: Moments of Bivariate M(0,I) Distribution

ki | ko | Biks | Okyko
10 o 1
210 1 V2
1{1] o 1
310] 0 V15
2111] o0 V3
4]0 3 V96
311 0 V15
212 1 V38
5(0] 0 /945
4{11] o0 105
312 0 V45
60| 15 | /10,170
511 0 /945
4{2| 3 306
313] 0 15

Using Eqs. 22 and 23, we computed the moment-based test results for the hypothesis A'(0, 1) «=
T]. The results are displayed in the left half of Table 5.

The numbers in the left part of Table 5 all have good confidence statistics with one or two
possible exceptions. Based on the scope of the moment-based tests, we cannot justifiably reject the
null hypothesis N'(0,I) —— T,, or equivalently, N'(0,0) 2, 7. The results thus far uphold the
conjecture that the output of the AR process, when driven by Gaussian noise processes, is itself
Gaussian.

As an example of a test sample that does not represent a Gaussian distribution, we simulated
the same AR model except that the noise channels were non-Gaussian. The channels were still
independent, but their outputs instead represented a uniform distribution over the interval (-1, 1).
Note that the probability density for such noise sources is

P(z)=30(z +1) — 30(z - 1) (25)
where
1 if >0
0(z) = 0 if <0 (26)

undefined if z=0
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Table 5: Moment-based Tests for AR Model Driven by Gaussian
Noise (left) and Uniform Noise (right)

ki | ko || Muiks | Zkiks | Okiiko ki | ko || Mgk, Zkey ka2 Qkey ks
110 | —0.0040 | —1.272 | 0.1017 110 0.0013 0.396 0.6539
01 0.0037 1.161 | 0.8772 011 0.0026 0.812 0.7916
210 1.0016 | —1.272 | 0.1017 210 0.9991 -0.190 0.4247
111 0.0037 1.175 | 0.8800 1 {1 | —0.0001 | -0.023 0.4908
0 2 0.9919 | —1.811 | 0.0351 0] 2 0.9880 | —2.673 0.0038
3 0 || —0.0030 | —0.248 | 0.4021 310 0.0030 0.243 0.5960
2 i1 0.0052 0.946 | 0.8284 211 0.0022 0.401 0.6558
11| 2| -0.0020 | —0.358 | 0.3602 142 0.0089 1.618 0.9472
0 3 || —0.0024 | —0.198 | 0.4215 0| 3 || —0.0028 -0.226 0.4106
4 10 3.0423 1.363 | 0.9136 4 | 0 1.9355 | —34.355 0
311 0.0046 0.376 | 0.6465 3|1 || —0.0852]| -6.959 0
2 2 0.9874 | —~1.410 | 0.0793 2| 2 0.9659 —3.810 | 6.9483 x 10~°
1 3 0.0087 0.710 | 0.7611 1 3 0.0530 4.329 1
0 4 2.9346 { —2.111 | 0.0174 0| 4 2.4365 | —18.187 0

Equivalently, the noise channel outputs, e; and eg, are described by the joint probability density

function
_J 174 if -1l<yr1<land —1<y2<1
P(yny2) = { 0 if 0 otherwise. (27)
The variance of the uniform zero-centered distribution is
— 1 /1 1
R 2 g = —.
et =3 /_ . z*dz 3 (28)

It is therefore fair to ask whether the output of the resulting AR process is distinguishable from
that of a bivariate Gaussian process where the variances of the noise channels are both 1/3. With
the assumption of such underlying noise processes, we generated another test sample of size N =
100, 000 and transformed the AR outputs Y, to the canonical form, 2, using the exact same steps
as above, except that the elements of o2 and the eigenvalues were all scaled down by a factor of 3.
Results are tabulated in the right half of Table 5.

The confidence statistics for this case are considerably poorer, especially for the fourth-order
moments. Some of the z and « statistics are clearly out of the mainstream. This provides convincing
evidence that the output of the AR model driven by uniform-distribution noise is non-Gaussian,
i.e., the hypothesis that the test sample corresponds to N (0,6/+/3). In conclusion, this shows that
momen’c based tests for Gaussianity extend readily to the multlvarlate realm and are effective in
examples such as this.

" An important point of note concerning the multivariate formalism introduced in this subsection
is that the standard error of the first-order moments is often expressed (e.g., Eq. 9 in [15], with
Eq. 8 in [15] analogous to Egs. 12 and 13b above) as a single statistic, viz.,

is the Heaviside step function.

_1N1 T -1
Ve 3w (g - w) (29)
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in which y denotes the N x P matrix of all test exemplars. This statistic, which essentially combines
the (k1,k2) = (0,1) and (k1,k2) = (1,0) rows in Table 5 into a single statistic, is a direct measure
of how many “standard errors of the mean” the computed sample means are from their expected
values under the null hypothesis. Graphically interpreted, it indicates on which ellipse in Fig. 1 the
computed joint sample mean lies.

3.3 Generalization to Multiple Test Classes

An important observation by Puri [19] concerning model validation, in general, was in noting
that in many practical applications, it may be useful to develop validation tests for models that
can potentially account for several different classes of test samples. Assigning test exemplars to
different “classes” is useful and appropriate if the various test exemplars differ a priori in some
identifiable manner (e.g., batches of data collected under different experimental conditions) that
can be summarized by a set of “inputs,” or control knobs {z;1,...,Z; ¢} in which there are Q input
parameters characterizing each exemplar. Within each class (i.e., a batch of test data all having
the exact same z; input vector), it is assumed that the exemplars are i.i.d. If the input variables
z; were the same for each i (i.e., effectively ignorable), the problem reduces to one of classical
homogeneity testing between the test data and a single simulation model® designed to account for
all of the test exemplars, i.e., determining whether or not the two sets could have emerged from
the same probability distribution. A number of well-known nonparametric tests can be applied to
this problem (cf., [16]). The problem is somewhat more complicated, however, if there exist two or
more test classes, in which case the simulation model output is different for each class, since the
z;’s enter the model as a set of parameters. Each class is, in effect, a “special case” that requires
generating a simulation sample tailored to it. If there are C classes, the model validation problem
becomes one of validating C null hypotheses simultaneously, viz.,

M ST, foralle=1,...,C. (30)

Since it is intended that the larger model account for all C classes, an overall assessment of the
model validity is based on how well the class-wise null hypotheses hold up on average. Puri proposes
one such class average, viz.,

1 o
Uk =5 > zke (31)
c=1

in which zy. = (Mg, — M)/ Sk, With Mg and S specific to class c. In [20], this is written
as Uy = 30 t, Us = 31, t2, etc., in which n and t¥ correspond to C and 2y Tespectively and
division by n is omitted.

4 Multivariate Hybrid Tests

Another theme common to several of the nonparametric tests that have been proposed ([5,
15, 20]) is rank transforms. We herein refer to these tests as “hybrid tests” because they involve
computing moments of rank-transformed distributions. Alternative tests that we describe later also
involve rank transforms, but do not involve computation of moments.

SA single model having different parameter settings, corresponding to different operating conditions X 4 is, for
purposes herein, considered to represent a different simulation model.

SBIR Topic A95-060 12 Barron Associates, Inc.




Multivariate Nonparametric Statistical
Final Technical Report Techniques for Simulation Model Validation

In the univariate domain, the rank-transform R = {ry,...,rn} of 7 with respect to M, is
defined such that

n= [ Py (32)

where P(y) is the probability distribution of M. The integral expression in Eq. 32 means that
if a very large number of simulation exemplars is generated, 7; is equal to the percentage of such
exemplars whose value is less than ;.7 In the limit of infinitely many simulation exemplars,
r; asymptotically approaches the value of the integral expression in Eq. 32. If the simulation
model is sufficiently tractable mathematically that P(y) can be computed analytically, the rank
transformation can be effected by direct evaluation of the integral. Otherwise, it is necessary to
generate a very large number of simulation exemplars and count the number of exemplars less than
each y;.

The most important property of R is that it represents a uniform distribution over the unit
interval (0,1) if and only if M «=— 7. We will denote this distribution as 24(0,1). The rank
transformation maps the correspondence problem from one domain to another. Instead of testing
the hypothesis M «=— 7 directly, we test the hypothesis /(0,1) «— R. The U(0,1) character
of R should emerge regardless of the functional form of P(y). This transforms the problem to a
canonical form that can be treated on a more unified footing.

Hybrid tests involve the application of moment-based hypothesis testing, where the null hy-
pothesis is ¢(0,1) <2 R. Just as sample moments were computed and evaluated vis-a-vis My, and
S) in the preceding section, in which a Gaussian distribution was assumed, hybrid tests similarly
involve computation of the sample moments of R and their evaluation vis-a-vis My and Sk, but
with respect to a (0, 1) distribution. The V and V* quantities that Reynolds introduces (see [20])
are analogous to U and U*, except that they represent moments of a uniform (rank-transformed)
distribution.

5 Partial Multivariate Rank Transformations

Extending the univariate rank transform concept, as described above, to the multivariate do-
main, is not a simple matter. In this section, we describe and compare two methods that have been
proposed for effecting rank transformations in the multivariate domain. In [5], Brodeen and Taylor
propose one such partial multivariate rank transform. A related test was developed independently
in {15]. In the following subsections, we clarify the distinction between the two approaches. We
refer to these techniques as “partial” rank transforms because, even though they perform a (uni-
variate) sort separately on each variate, they search for uniformity only with respect to a single
variate. This contrasts with complete multivariate rank transforms, which we introduce in the next
section.

5.1 Hybrid Test Method 1

In reference to Eq. 8 of [5], Brodeen and Taylor seek to ascertain whether a set of C test
classes, {T:}ce1,....c, are all in correspondence with one another, i.e., all characterized by a common
p.d.f. and simulation model, M. If 7. is expressed as a N, x P matrix with elements yip.c, where N,

YElsewhere in the literature, including [15], division by N is omitted.
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is the number of exemplars in 7; and P is the number of variates, Brodeen and Taylor amalgamate
the 7.’s vertically into a N X P matrix, where N = Zg’;l N,. For each test class, they examine the
distribution of the variate-wise ranks r; , ., which is the percentage of exemplars in the amalgamated
set whose p’'th variate is less than y; .. If the null hypothesis 73 ST 22 T, =5 M
is valid, it follows that the set {r;p}ic7. should be distributed uniformly on the unit interval for
each ¢ and p. In other words, each test class should mix uniformly among all of the other classes
on a variate-wise basis.

It is noted that the variate-wise uniformity of r; . for each c is a necessary, but not sufficient,
condition for the null hypothesis to be vindicated. Brodeen and Taylor proceed to test for variate-
wise uniformity by computing the variance statistic

Vo= 23 L (e 21) ot (me- 20) )
= —r,.—= O

N Pt P 1,C 2 1,C 2
which is analogous to Eq. 29 herein except that the rank-transformed set, R, has been used in
place of the model outputs themselves. Since each {r;pc}ic1,...n, is hypothesized to be uniform
on (0,1), the means of the rank-transformed distributions should all be 1/2. ¢ in Eq. 33 denotes
the variance of the simulation output, S, rank-transformed with respect to M, where S is a large
simulation run generated from M itself.

In applying this test, Brodeen and Taylor treat only the case of C' = 1, i.e., one class at a
time. In doing so, they generated a simulation sample, S;, for each ¢ (corresponding to one of
several different possible operating conditions for a communication network), amalgamated S, and
7., the simulation model output vectors and measured test data vector, respectively, and computed
the resulting r; .p’s. They computed the variance statistic for each {r;pc}ic1,..,n, set to test for
variate-wise uniformity in the test class.

5.2 Hybrid Test Method 2

The essential difference between the method that we introduced in [15], and the Brodeen and
Taylor approach described above, is chiefly a matter of how classes are interpreted and treated. In
[5], the problem at hand involves one or more test samples that are conjectured to be representations
of a single surmised simulation model. The validation method employed in [5] is then one of rank-
transforming each class with respect to that simulation model and computing V, for each class.
In the approach of [15], we were concerned with a model validation scenario in which C different
simulation models, {M_}ce1,...c, were available to account for identifiable a priori differences in
the various classes (e.g., different operating scenarios in a communication network). For each class,
we generated a simulation set, S, and computed o, (written as Q in [15]) as the variance of S,
rank-transformed with respect to M.. For each ¢, we computed a V. statistic identical to that in
Eq. 33, except that o, appears in our formulation in lieu of . We then average the V,’s over all of
the classes to obtain an overall variance statistic that indicates how well, on average, M, accounts
for 7;. The formulation of [15] enables one to handle the extreme case in which all of the test
exemplars are taken under a different operating condition.

To test the performance of the simulation model validation algorithm of [15] in an application
example, we applied it to the bivariate AR validation scenario described in 3.2. This problem
involved a surmised model with 2{/(—1, 1) noise channels and test samples, 7; and 75 (N = 10,000
exemplars each), generated using U(—1,1) and N(0,1/+/3) noise respectively. C = 1 in this
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example. The expected value of V, under the null hypothesis, is unity. The computed values
were 0.9965 and 0.9181 for 77 and 73 respectively. The corresponding confidence statistics, based
on standard errors of \/2/N, were 0.2475 and 5.7912. Based on these confidence statistics, the

algorithm is effective in rejecting M LN 7>, and, appropriately, does not reject M PN

6 Complete Multivariate Rank Transformations

The partial multivariate rank transformation methods such as those described above do not map
the simulation model p.d.f. onto a uniform distribution in P dimensions. Nor do they represent true
generalizations of the rank transform methodology to the multivariate domain. Rather, they effect
univariate transformations on a variate-wise basis. As a result, they may fail to detect couplings
in the model outputs. As an example of how they could fail, consider the bivariate probability

distribution
P(z,y) =2z + 2y — 4xy (34)

which is such that the strip integrals in both directions, fol P(z,y)dz and fol P(z,y) dy, are inde-
pendent of ¥ and z respectively. Since this p.d.f. is invariant under the variate-wise rank transfor-
mation, the partial rank transform tests would fail to distinguish it from a uniform distribution on
the unit square.

In this section, we propose a complete multivariate rank transform that does map an arbitrary
P-dimensional p.d.f. onto a true multivariate uniform distribution. For a multivariate model, M,
characterized by a p.d.f. P(y1,...,yp) and a test sample 7 = {Ei}ie{l,...,N}’ the rank transform, R,
of T with respect to M is defined as the set {r;}ic(1,... v}, Where r; = (ri;1,...,7i,p) is the P x 1
column vector such that

Vil (o9 oY)

Ti1 = / / / P(ylw-':yP)dyl"'dyP (353')
—-00 J—00 )
Yi,2 (8} (&

re = [ [ [T P zelua) dia - dye (35b)
-0 —0Q —C0
Yi, P

Tip = / P(yplyir, - ¥i,p-1) dyp. (35c)
—00

The integral in Eq. 35a is computed by integrating the variable y; from —oo to y;; and all of
the P — 1 remaining y variables from —oo to co. An elaborate definition of the multivariate rank
transform is necessary to account for correlations among the P variables in the output distribution.
If the null hypothesis M «= T is valid, it follows that U(0,1)” <2 R , where U(0,1)? is the
P-dimensional analog of the unit interval, i.e., the set of all ordered P-tuples such that the value
of every component is greater than zero, but less than unity. For the bivariate case (P = 2), for
example, (0, 1)? is the uniform distribution on the unit square in the two-dimensional zy-plane,
the probability density for which is

1 f0<z<landl<y<l1
0 otherwise.

P(z,y) = { (36)

Alternatively, the bivariate rank transform may be interpreted as the inverse of a filtering operation
that takes a pair of independent U(0,1) random number generators and transforms the resulting
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stream of numbers to emulate the output distribution of the model in question. If the surmised
model is in fact valid, one will obtain a #4(0, 1) distribution irrespective of the ordering of the
variate through which the integrals in Egs. 35 are evaluated. An important advantage of the
complete multivariate rank transform is that it maps the model output into a canonical form (viz.,
U(0,1)P), for which the moments can be found from a table lookup (whereas & has to be computed
for each individual case in the partial rank transforms).

To demonstrate the application of the complete multivariate rank transform, we selected, as
our hypothesized model, M, the output of the same bivariate AR model in the preceding section,
but with an independent pair of 2/(~1,1) distributions as the noise channels. The test samples
were derived from the same AR process, but with an independent pair of (-1, 1) and N(0,1/+/3)
distributions, respectively, in the noise channels. Both test samples were of size N = 10, 000. Thus,
we should expect the hypothesis M 2 77 to be vindicated, but the hypothesis M —— T3 to be
refuted.

Since the noise inputs in the model M are non-Gaussian, the probability distribution of M
cannot, as far as we know, be determined analytically, unlike in all of the preceding cases treated
thus far. Thus, it is not possible to compute the r;’s by appealing to an analytic description of
the model output. The probability distribution characterizing M can only be ascertained (approx-
imately) by generating a large simulation sample, S. In accordance with Eq. 35a, r;1 is defined
operationally as the percentage of simulation exemplars in S whose first component is less than
z;1. Since it is not possible operationally to compute the rank transform for r;9, as in Eq. 35b,
with a simulation sample, S, of finite size, it is necessary to make approximations. We generated a
simulation sample, S, of 500,000 exemplars using bivariate U(—1, 1) noise and computed the rank
transforms, R; and Ra, of 73 and 75 respectively vis-a-vis S through the following steps. The
output space was partitioned into a 10 x 10 grid, as shown in Fig. 2. The shaded strip pertains
to those test and simulation exemplars for which the computed 7;; value lies in the third decile,
viz.,, 0.2 < ;1 < 0.3. A simulation exemplar is assigned to the strip if the z; value of that ex-
emplar lies in the third decile with respect to the entire simulation sample, S. A test exemplar is
assigned to the strip if between 20% and 30% of simulation exemplars assume smaller z; values.
The finite width of this strip provides a sufficiently large subset of exemplars (on average, 1/10 of
N = 10,000, or 1,000) such that the distribution of z9 values within this strip can be observed.
For all points in the shaded strip, ;1 was “snapped” to 0.25, corresponding to the z;-centroid of
the strip. ;2 for each test exemplar in the strip was computed by counting the percentage of sim-
ulation exemplars in the strip that assume smaller z, values. In doing so, the resulting r; 2 values
are snapped to the zp-centroid values of the corresponding deciles. The resulting set of (r; 1,7;2)
values serves as a good working approximation of the rank transform that would, in principle, be
obtained from Egs. 35 were a virtually infinite simulation sample, S, obtainable practically. As
the number of simulation exemplars increases, the grid mesh can be made finer, and thus a more
accurate approximation of the exact rank transform can be obtained.

A graphical plot of the rank-transformed distributions are shown in Fig. 3, from which it is
evident visually that the points in the plot for 7; (on the left) appear to be more uniformly
dispersed than in the plot for 73 (on the right). In the latter, there is a preponderance of points in
the center.
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Figure 2: First Steps in Computing a Rank Transform by Cutting
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Figure 3: Rank-transforms of 77 (left) and 73 (right)

With the approximate rank transforms, R; and Ry, computed thusly, sample moments of
R1 and Ry were computed. The results are displayed in Table 6. For each sample moment,
My kg, the z-statistic, 2k, k, = (Miyky — Mk, ks)/Skik, 18 provided, where My, k, = ik, &, and
Sk1 ks = Oky ky/VN are computed analytically. The results for the first few moments are given in
Table 7. The confidence statistic, Qg ky = Erf(zg, x,), is defined as in the earlier moment-based
tests.
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Table 6: Hybrid Tests for AR Model Driven by Gaussian Noise
(left) and Uniform Noise (right)

2k1,k2 2k, k2
10 x 10 50 x 50 10 x 10 50 x 50

ki | ko y1-cut Yo-cut y1-cut | ye-cut y1-cut ya-cut y1-cut yo-cut

110 0.3291 1.7251 0.1732 | 1.8041 —0.8799 3.0415 || —1.0905 3.0844
01 1.5935 0.0624 1.8755 | 0.1891 3.0068 | —1.0115 3.0567 | —1.1702
2| 0 | —0.0856 1.3016 0.0273 | 1.6871 —5.2946 1.4271 || —4.6738 1.8842
111 1.3101 1.2219 1.3790 | 1.3583 2.1589 1.9358 1.4823 1.9431
0] 2 1.2023 | —0.2969 1.7785 | 0.0545 1.3566 | —5.4260 1.9866 | —4.7855
310 | —-0.2635 1.0130 || —0.0152 | 1.5844 —7.8424 0.3607 {| —6.7373 1.0707
21 0.7158 0.9452 0.9085 | 1.3200 —1.9633 1.0890 || —2.1226 1.4105
1] 2 1.0052 0.6738 1.3824 | 0.9520 1.2895 | —2.1599 0.9772 | —1.5809
013 0.9358 | —0.4277 1.6844 | 0.0409 0.2649 | —7.9786 1.2652 | —6.8348
4 |0 || —0.4214 0.7230 || —0.0173 | 1.4985 —9.1501 | —0.3418 |} —7.5150 0.6699
311 0.3736 0.6698 0.6448 | 1.2213 —-4.6770 0.2437 || —4.5128 0.7671
212 0.5766 0.5620 0.9902 | 0.9950 —1.8651 | —2.0477 }| —1.9431 | —1.3851
113 0.7167 0.4033 1.2967 | 0.7439 0.4318 | —4.7686 0.4337 | —3.7780
01| 4 0.6655 | —0.5546 1.6086 | 0.0704 —0.4503 | —9.2963 0.9357 | —7.5887

Table 7: Moments of Bivariate N(0,1) Distribution

ki | ko | iy ks Tky ky
10 1/2 J1/12
20| 1/3 VAT
101 14 | V714
310 1/4 | /112
21 1] 1/6 | /7/180
110 1/5 | /16/2%5
3| 1| 1/8 | 43/1344
212 1/9 \/56/2025
510 |-1/6 | /25/39%
4 [ 1 1/10 \/73/2700
3| 2| 1/12 | 4/109/5040
6 10| 1/7 | /36/637
501|112 | /37/15%4
4|2 |1/15| i/25
3| 3| 1/16 | /20712544

Table 6 tabulates the z-statistic values that are obtained for 7; and 73 under four different alterna-
tive approximation methods for computing the rank transform. Whereas the preceding discussion
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appealed to a 10 x 10 grid for illustration purposes, a different mesh size, such as 50 x 50, is
equally admissible. Results for these two alternative grid sizes are presented. Computing the rank
transform by cutting strips along ys first is as valid as taking cutting strips along y; first; results
for these two alternative procedures are also tabulated in Table 6 and referred to as “yo-cut” and
“y1-cut.”

The z-statistics in Table 6 exhibit consistently moderate values for 7; both for 10 x 10 and
50 x 50 meshes. The salient results are insensitive to whether the y;-cut or yo-cut method is
selected. For 73, on the other hand, a disproportionate number of z-statistics in all four scenarios
lie beyond three standard errors. These results suggest that M «— 75 be rejected based on
the scope of the multivariate hybrid test, and (correctly), that M 2> 77 not be rejected. It
is especially remarkable that good agreement between the computed and expected moments of
the rank-transformed distributions for 7; was obtained for both the 10 x 10 and 50 x 50 meshes.
This speaks favorably to the robustness not only of the complete multivariate rank transformation
method, but also of the partition method through which the rank transform was computed.

7 Multinomial Tests

In this section, we propose a multivariate nonparametric test that involves partitioning the
rank-transformed set into bins and working directly with the numbers in those bins, rather than
computing moments. The method is also extremely pertinent, as will be demonstrated, for scenarios
in which the model output is discrete rather than continuous. As in the x? test, this approach in-
volves partitioning the rank-transformed set, R, into bins, and evaluating the discrepancies between
the observed and expected numbers of observations per bin.

The x? and Kolmogorov-Smirnov (KS) tests both appeal to x? distributions to compute con-
fidence statistics. The implicit assumption, however, is that the asymptotic conditions for appli-
cation of the CLT are satisfied. This, however, is not always the case. To illustrate the point, we
show herein how the X2 test yields an erroneous confidence statistic in the simple scenario of a
coin-flipping experiment.

Suppose that a fair coin is flipped 100 times and that 55 heads are obtained. We wish to reach
an informed impression, based on the results of this test, as to whether the coin is fair. .This
means computing a confidence statistic which, in this case, is equal to the probability of obtaining
fewer than 55 heads. We note that the bin counts (i.e., number of heads and number of tails) are
distributed as a binomial distribution, viz.,

N!
P(ny) = o P pr” (37)

in which N = 100 is the total number of flips, ng is the number of heads obtained, np = N —ngy
is the number of tails, and pgy = 1/2 and pr = 1 — py = 1/2 are the probabilities of a single flip
yielding heads or tails respectively. The functional form of P(ng) is illustrated in Fig. 4.
The confidence statistic, ¢, is therefore equal to the P(ng) summed from ng = 0 to 54. The exact
result is o = 0.8159.

The x? test, by contrast, yields a confidence statistic based on the quantity

2 _ (Og — Eg)? . (Or — Er)? _ (55— 50)? N (45 — 50)%"
X =TT Eg Er 50 50

=1.00 (38)
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Figure 4: Probability of Obtaining ng Heads on 100 Coin Flips

in which Oy = 55 and O = 45 are the observed numbers of heads and tails, and Ey = Er = 50
are the expected counts. Since there are G = 2 bins in this case, the confidence statistic may
be obtained by evaluating the definite integral a = f0><2 fu(v)dv analytically, where f, denotes
the standard x? function with ¥ = G — 1 = 1 degrees of freedom and x? = 1. One obtains
o = 0.6827, which differs significantly from 0.8159. This illustrative example thus indicates that
the x? test, although generally very effective in determining “goodness of fit,” does not necessarily
yield accurate confidence statistics. The x? test will yield accurate o values only if the asymptotic
conditions of the CLT are satisfied.

The KS test also proves unsatisfactory in the context of this simple coin-flip scenario, but
for entirely different reasons. KS applies easily only to cases in which the output of the stochastic
model in question is continuous, as opposed to discrete. The rank-transformed set, R, must assume
essentially a continuum of values so that the quantity |r; — i/N| can be computed meaningfully.
Furthermore, the KS test cannot be extended to the multivariate domain, since there is no satis-
factory way of generalizing the notion of a cumulative distribution function to probability density
functions of two or more variables.

These shortcomings of the x? and KS tests motivate the development of an alternative non-
parametric test. The binomial distribution analysis above is the essence of such an alternative
teclinique that we herein advocate and will refer to as the multinomial test. This test seeks to
answer the following question: Suppose that we have. a distribution consisting of G > 2 bins and
n1 observations in the first bin, ny in the second, ..., ng in the G’th bin. This could represent
either the output distribution of a discrete-output stochastic process or a partitioning of the rank-
transformed output of a continuous-output process into G cells. Does this distribution represent a
uniform distribution in which there are N/G observations in each bin, where N = 22;:1 ng is the
total number of observations?

The multinomial test models the bin counts in such scenarios as a multinomial distribution
of dimension G, which states that if N observations are to be distributed among G bins, the
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probability of finding n; observations in the first bin, ny in the second, etc. is equal to

!

P(nl,...,ng)=51!—.]Y:—n-ap?1---pZG (39)
where N = ch=1 ng is the total number of incidents and p, is the probability of any particular
incident falling into the g’th bin. For rank-transformed sets in continuous-output stochastic pro-
cesses, the bin occupancy probabilities are equal, viz., py = 1/G ,for g =1,...,G. The expected
value of ng is clearly equal to Np; = N/G.

The multinomial test is concerned with whether the bin counts in toto deviate significantly
from the most probable scenario in which there are equal numbers of observations in each bin. The
technique that we propose herein is to compute the log-likelihood statistic

P(ni,...,ng)
P(N/G,...,N/G)

in which P(ny,...,ng) and P(N/G,...,N/G) are computed as in Eq. 39. For given N and G
values, the A statistic is characterized by a well-defined distribution whose functional form can be
ascertained (approximately) through simulation. For example, the A distribution for N = 100,
G = 2 can be examined by performing a large number of simulation runs in which a coin is flipped
100 times. In each such run, the number of heads is counted and the corresponding A value
recorded. After a large number of such 100-flip runs, the A distribution emerges.

The multinomial test, like the x? test, is extensible readily to the multivariate domain. The
mathematical formulation is no different from in the univariate domain, and is simply a matter of
working with a larger number of cells. In Section 6, we sought to test the hypotheses M AN
and M —— T, by partitioning the rank-transformed sets into 10 x 10 or 50 x 50 arrays. The
bin counts for the 10 x 10 partition for 73 and 75 are provided in Table 8. These are simply the
number of exemplars that are snapped onto each cell centroid in the rank transform computation
algorithm introduced in the preceding section. The upper (lower) two tables are for y;-cut (y2-cut)
rank transforms. The second column of the first row of the upper left-hand table, for instance,
indicates that for 77, there were 111 incidents for which 0.1 <r;; <02and 0 <r;5, < 0.1. It is

A=-In

(40)

Table 8: Bin Counts for 7; (left) and 75 (right)

92 111 97 95 82 83 93 99 91 120 91 85 75 97 96 92 103 91 80 84
106 105 83 96 116 89 117 104 103 93 76 66 85 63 85 90 63 70 52 63
104 97 90 117 103 100 112 82 99 109 101 76 92 113 85 98 109 89 79 102

86 94 102 114 124 90 91 102 106 106 113 110 103 120 118 126 106 110 102 129

94 89 90 107 97 112 91 102 107 95 118 98 145 140 139 151 140 146 119 127
107 99 102 92 98 98 85 124 109 90 124 92 118 134 125 161 149 148 125 150
105 95 106 95 111 87 104 117 99 108 91 120 118 117 132 131 139 134 103 133

92 92 90 106 90 114 104 108 92 99 82 75 91 83 102 125 87 108 96 94

76 96 89 107 100 107 95 98 93 109 55 53 47 73 78 75 50 54 68 62
100 123 105 91 95 98 113 96 106 98 80 75 78 100 96 114 103 84 78 79

94 100 111 77 98 101 104 96 89 80 95 77 89 103 120 133 96 86 57 68
117 104 98 98 90 100 94 89 93 136 84 68 72 107 101 91 122 85 53 86

89 85 95 97 93 98 110 89 90 96 80 85 87 107 143 118 121 91 50 66

83 102 111 113 107 89 94 104 109 97 97 56 113 122 138 130 120 83 71 88

94 109 110 124 97 104 112 93 98 92 96 85 86 119 138 126 139 102 79 109

88 91 101 94 108 95 84 112 108 98 98 99 95 137 145 150 135 124 75 95

92 116 107 90 93 85 101 115 89 110 95 58 104 110 138 149 139 92 46 112
100 107 88 99 102 124 121 96 95 96 84 72 95 105 139 141 142 103 51 99

90 106 98 111 104 105 91 97 97 122 82 54 95 103 119 122 111 82 66 78
119 99 107 97 107 84 110 104 98 96 77 87 86 124 155 139 121 83 72 79

evident visually, from casual inspection of the two sets of numbers, that the numbers in the tables

SBIR Topic A95-060 21 Barron Associates, Inc.




Multivariate Nonparametric Statistical
Final Technical Report Techniques for Simulation Model Validation

on the left are more uniform and closer to the expected value of 100 than those in the table on the
right.

For both the 10 x 10 and 50 x 50 arrays, we computed the multinomial probability expressions
in Egs. 39 and 40. The A scores are tabulated in Table 9. Upon simulation of the A distribution for
(N = 10,000, G = 100) with 100 runs, the mean and root-variance of the distribution appear to be
approximately 50 and 7 respectively, which indicate a very good confidence statistic for M <> 77,
but an outlandishly large one for M <2, 7;. Based on the scope of the multinomial test, we can
therefore reject the latter hypothesis, but the former hypothesis, i.e., M = Ty, for 10 x 10 bins,
can clearly not be rejected based on the scope of the multinomial test. The same conclusions follow
from a 50 x 50 partition, where a simulation of the A distribution for (N = 10,000, G = 2,500)
exhibit a mean between 1,150 and 1,200 (see Table 9)./

Table 9: A Statistics for 7; (top) and T (bottom)

A o
y1-cut 48.38 | 0.42
10 x 10 | yo-cut 53.53 | 0.70
yr-cut | 1,231.4 | ~ 0.8
71 | 50 x 50 | yo-cut | 1,230.5 | ~ 0.8

y1-cut 357.1 1

10 x 10 | yo-cut 354.2 1
yi1-cut | 1,805.2 1

Ty | 50 X 50 | yo-cut | 1,772.6 1

7.1 Application of Multinomial Test to Bivariate Poisson Process

The log-likelihood statistic from the multinomial test offers an extremely useful and powérful
technique for testing rank-transformed distributions for uniformity. The log-likelihood approach
is also applicable to other types of discrete-output models because it is geared inherently toward
counting discrete events in bins. As an example, we generated a bivariate Poisson process with
Aa = 0.001 and Ap = 0.003 (i.e., A4 and Ap were the respective probabilities of a type A or type
B event in a given time step), and ran it for 100,000 time steps.

It is well known that the probability of exactly N4 type A events and Ny type B events occurring
in a duration of T time steps is P(N4)P(Np), where '

. NA .
P(Ns) = ﬁ*ij\;l’.),__.e-w (41a)
A-
‘ ..
P(Np) = @]\?,—-e—ABT (41b)
B-

IPhase 2 will focus on generating confidence statistics for A distributions in a more accurate and thorough manner.
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A log-likelihood score, A, can be computed as

P(N4)P(Np)

A==l | BT POST)

(42)

where A4T and AgT are the expected number of type A and type B events.

By generating a large number of simulation runs, the distribution of A can be observed. Fig. 5
shows a histogram plot for the distribution based on a simulation sample of 200 exemplars. By
comparing the output of a particular test case (i.e., numbers of type A and type B events) to the
distribution, a confidence statistic can be obtained and the validity of the surmised Poisson model
assessed.

1"

Log-likefihood

Figure 5: Simulated Distribution of A Values for Poisson Process

8 Conclusions

In this Phase I study, we investigated several fruitful methods of developing nonparametric tests
to validate multivariate stochastic models. We began by examining, comparing, and reconciling the
methods proposed earlier in [5] and [15]. Both of these methods can be classified as partial rank
transformations, in that they effect essentially univariate rank transforms on a variate-wise basis.
Both methods then test for uniformity in the resulting rank transformed sets by evaluating their
moments. The methods differ chiefly in terms of how they interpret and treat different operating
scenarios for the test and model data.

Herein, we showed how to construct a complete multivariate rank transform that maps the
model output onto a uniform distribution in P dimensions. This method is a true generalization of
the univariate rank transform to the multivariate domain and provides a robust test for detecting
dependencies among the variates; it also converts the output distribution into a canonical form,
thus obviating the need to compute the variance and higher-order moments for each and every class
(i.e., operating scenario) or model.
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We also showed that there are two basic ways of determining whether the model output (or
a rank transformed output) conforms to the distribution predicted by the null hypothesis. One
approach involves computing moments and ascertaining whether the moment values for the test
sample and simulation model output are in good agreement. All of the previous attempts to
construct nonparametric multivariate model validation methods espouse this basic strategy. The
alternative approach is to partition the output distribution into bins and ascertain whether the
observed and expected bin counts are in good agreement. We showed how the multinomial test
methodology provides a more accurate correspondence assessment than the x? test and how the A
statistic serves as an excellent summary indicator of overall agreement. Both techniques appear to
be extremely effective for continuous-output models, but the bin-partition approach is especially
suitable for discrete-output models.

9 SBIR Phase 11 Effort

In Phase II, Barron Associates, Inc. will propose undertaking the following endeavors: (1)
assess the relative performance and computational complexity of the various algorithms discussed
herein on more elaborate synthetic test problems than was possible under the Phase I effort; (2)
explore methods for developing decision algorithms (e.g., thresholds) to achieve certain specified
false-positive and false-negative rates in various scenarios; and, very significantly, (3) apply these
methods to a real-world stochastic, multivariate, model validation problem. Pursuant to the second
goal, we plan to explore the asymptotic threshold methodology (based on the sizes of the test and
simulation samples) that we suggested in [15]. The third effort will shed light on the special
considerations and intricacies in applying these mathematical tools to practical problems. One
such pioneering effort in this direction involving forestry data was reported in [20]. Although this
study focused on univariate techniques only, its purpose was to prove the efficacy of the proposed
methodology in a situation involving real-world empirical data.

As an example of a real-world stochastic, multivariate, model validation problem, consideration
might be given to assessing an Army combat radio communications network, such as that discussed
in [10], for which a simulation program, laboratory experimental data (conducted on a combat radio
network at the Ballistic Research Laboratory), and benchmark results [5] are available. (Note that,
regardless of the choice of real-world problem, the basic model validation procedure will be the
same.) The purpose of the communications network experiment of [10] was to quantify the effect
of three control factors, viz., message length, message arrival rate, and transmission mode (single
channel or frequency hopping), on network performance (defined by mean throughput and delay).
These experiments were designed specifically to enable the use of statistical techniques to determine
the effect of the various control factors on network performance. For this problem, a simulation of
the communications network has already been coded using the commercially-available OPNET suite
of tools. The communications network simulation problem is one with widespread applicability,
and so simulation validation for this problem will likely be of considerable interest and relevance
to the Army, as well as others. -

As an alternative, BAI could readily acquire other simulation software and test data in related
application areas (e.g., computer and communications networks), as well as unrelated application
areas (e.g., fixed- and rotary-wing aircraft flight control systems).As a representative example
of the latter, consider the validation of the NASA F-18 High Alpha Research Vehicle (HARV).
At the NASA Dryden Flight Research Center (DFRC), a six-degree-of-freedom, nonlinear, batch
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simulation represents one process. The other process is a hardware-in-the-loop (HIL) simulation,
which includes the F-18 mission computer and flight control computer. The HIL simulation provides
a more realistic test of the RFCS control law implementation for performance validation of the
research flight control system (RFCS) control laws. In actuality, neither process can be considered
the “true” process, as both simulations have simplifications and each can (and has) been used
to discover “anomalies” with the other. Present NASA validation procedures include comparing
outputs from the batch simulation and the HIL simulation for a number of test cases that specify
the test flight conditions and command inputs. Plots of the two simulations are compared manually
to determine if significant differences exist that may indicate anomalous or unexpected behavior.
Manual validation of the HIL model against the batch simulation is very time consuming. Each
anomaly discovered must be investigated and resolved by NASA engineers prior to flight testing
the RFCS on the F-18 HARV aircraft. This manual review process represents a central bottleneck
in the process of validating a new RFCS for the F-18 HARV, often precluding additional test cases
that might otherwise prove useful.

It is noted that these simulation models may be more accurately classified as deterministic than
stochastic, even though there are stochastic components due to turbulence and other noise sources
(e.g., EMI). New approaches, well-founded mathematically, are needed to address such problems
and would, we believe, demonstrate clear performance superiority and practicality (from the user’s
point of view) not only over the manual validation approach, but also over such “neural network
feature-based approaches” as are currently being pursued by some (see, e.g., [1]).

As suggested by the latter application area, a potential thrust of the Phase II program might
be to focus effort on the validation of models of non-stochastic systems, such as continuous-state
dynamic systems, which are described by differential equations, and deterministic discrete-event
systems, which include temporal logic, min-max algebraic models, finite state machines, and Petri
nets.

Still another alternative for the Phase II effort might be to address simulation model validation
problems across the most commercially-relevant classes of models, with the goal of creating a
“toolbox” of procedures for users covering many types of simulation models.
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